The Aboodh transform is a type of integral transform . Khalid Suliman Aboodh formulated it in 2013.<ref>Murali, Ramdoss; Selvan, Arumugam Ponmana; Park, Choonkil; Lee, Jung Rye (2021-06-15). "Aboodh transform and the stability of second order linear differential equations" . Advances in Difference Equations . 2021 (1): 296. doi :10.1186/s13662-021-03451-4 . ISSN 1687-1847 . </ref><ref>Ojo, Gbenga O.; Mahmudov, Nazim I. (January 2021). "Aboodh Transform Iterative Method for Spatial Diffusion of a Biological Population with Fractional-Order" . Mathematics . 9 (2): 155. doi :10.3390/math9020155 . ISSN 2227-7390 . </ref><ref>Aboodh, Khalid Suliman (2013-04-01). "The new integral transform "Aboodh transform"" . Global Journal of Pure and Applied Mathematics . 9 (1): 35–44. </ref><ref>Selvam, A.; Sabarinathan, S.; Pinelas, Sandra (2023-09-24). "The Aboodh Transform Techniques to Ulam Type Stability of Linear Delay Differential Equation" . International Journal of Applied and Computational Mathematics . 9 (5): 115. doi :10.1007/s40819-023-01577-5 . ISSN 2199-5796 . S2CID 262148893 . </ref> It is defined as a set
<math>A = \{ f(t) : \ni M , a , b > 0 ,|f(t) | < M e^{-vt}\} </math>
<math>a \leq v \le b </math>
<math> A [f(t)]= \frac {1}{v} \int_0^\infty f(t) e^{- vt} \, dt</math>
The Aboodh transform has been used in fields such as the double,<ref>Ouideen, Yasmin; Al-Aati, Ali (2022). "On Double Aboodh-Shehu Transform and Its Properties with Applications" . Albaydha University Journal (in العربية). 4 (3). doi :10.56807/buj.v4i03.331 . ISSN 2709-9695 . </ref> triple,<ref>Alfaqeih, T. Özis S. (2019). "Note on Triple Aboodh Transform and Its Application" . IJEAIS . 3 (3): 1–7. </ref><ref>"Triple Aboodh Transform" .[dead link ] </ref><ref>Raghavendran, P.; Gunasekar, Th; Balasundaram, H.; Santra, Sh S.; Majumder, D.; D. Baleanu, D. (2023). "Solving fractional integro-differential equations by Aboodh transform" . Journal of Mathematics and Computer Science . 32 (3): 229–240. doi :10.22436/jmcs.032.03.04 . Retrieved 2024-01-19 . </ref> and quadruple Aboodh transforms,<ref>"Quadrapole" .[dead link ] </ref> fuzzy logic<ref>"Fuzzy Aboodh Transform" .[dead link ] </ref><ref>"Fuzzy Aboodh" . </ref><ref>Oyewumi, A. A.; Oderinu, R. A. (2022-09-01). "Application of the Combined Aboodh and Reduced Differential Transform Methods to the Fisher's Type Equations" . Asian Journal of Pure and Applied Mathematics . 4 (1): 572–585. </ref> and fractional theory.<ref>Zi̇ane, Djelloul; Belgacem, Rachid; Bokhari̇, Ahmed (2022-06-30). "Local Fractional Aboodh Transform and its Applications to Solve Linear Local Fractional Differential Equations" . Advances in the Theory of Nonlinear Analysis and Its Application . 6 (2): 217–228. doi :10.31197/atnaa.979506 . ISSN 2587-2648 . </ref> Patil compared it to the Laplace transform .<ref>Patil, Dinkar (2018-12-01), Comparative Study of Laplace, Sumudu, Aboodh, Elzaki and Mahgoub Transforms and Applications in Boundary Value Problems (SSRN Scholarly Paper), Rochester, NY, SSRN 4094218 , retrieved 2024-01-19 {{citation }}
: CS1 maint: location missing publisher (link ) </ref><ref>Awuya, Michael A.; Subasi, D. S. (2021). "Aboodh Transform Iterative Method for Solving Fractional Partial Differential Equation with Mittag–Leffler Kernel" . Symmetry . 13 (11): 2055. Bibcode :2021Symm...13.2055A . doi :10.3390/sym13112055 . </ref><ref>Ojo, Gbenga O.; Mahmudov, Nazim I. (2021-04-20). "Application of Aboodh Transform Iterative Method for Solving Time – Fractional Partial Differential Equations" . International Journal of Sciences: Basic and Applied Research (IJSBAR) . 57 (2): 65–85. ISSN 2307-4531 . </ref>
References
<references group="" responsive="1"></references>