Template:Relative permittivity table
Material | εr |
---|---|
Vacuum | 1 (by definition) |
Air | 1.00058986±0.00000050 (at STP, 900 kHz),<ref> Hector, L. G.; Schultz, H. L. (1936). "The Dielectric Constant of Air at Radiofrequencies". Physics. 7 (4): 133–136. Bibcode:1936Physi...7..133H. doi:10.1063/1.1745374.</ref> |
PTFE/Teflon | 2.1 |
Polyethylene/XLPE | 2.25 |
Polyimide | 3.4 |
Polypropylene | 2.2–2.36 |
Polystyrene | 2.4–2.7 |
Carbon disulfide | 2.6 |
BoPET | 3.1<ref name="YoungFreedman2012">
Young, H. D.; Freedman, R. A.; Lewis, A. L. (2012). University Physics with Modern Physics (13th ed.). Addison-Wesley. p. 801. ISBN 978-0-321-69686-1.</ref> |
Paper, printing | 1.4<ref name=Borch01>
Borch, Jens; Lyne, M. Bruce; Mark, Richard E. (2001). Handbook of Physical Testing of Paper Vol. 2 (2 ed.). CRC Press. p. 348. ISBN 0203910494.</ref> (200 kHz) |
Electroactive polymers | 2–12 |
Mica | 3–6<ref name="YoungFreedman2012"/> |
Silicon dioxide | 3.9<ref name=Gray&Meyer>
Gray, P. R.; Hurst, P. J.; Lewis, S. H.; Meyer, R. G. (2009). Analysis and Design of Analog Integrated Circuits (5th ed.). Wiley. p. 40. ISBN 978-0-470-24599-6.</ref> |
Sapphire | 8.9–11.1 (anisotropic)<ref name=Harman>
Harman, A. K.; Ninomiya, S.; Adachi, S. (1994). "Optical constants of sapphire (α‐Al2O3) single crystals". Journal of Applied Physics. 76 (12): 8032–8036. Bibcode:1994JAP....76.8032H. doi:10.1063/1.357922.</ref> |
Concrete | 4.5 |
Pyrex (glass) | 4.7 (3.7–10) |
Neoprene | 6.7<ref name="YoungFreedman2012"/> |
Natural rubber | 7 |
Diamond | 5.5–10 |
Salt | 3–15 |
Melamine resin | 7.2–8.4<ref>
"Dielectric Materials—The Dielectric Constant". Retrieved June 17, 2023.</ref> |
Graphite | 10–15 |
Silicone rubber | 2.9–4<ref>
"Properties of silicone rubber". Azo Materials.</ref> |
Silicon | 11.68 |
GaAs | 12.4<ref>
Fox, Mark (2010). Optical Properties of Solids (2 ed.). Oxford University Press. p. 283. ISBN 978-0199573370. </ref> |
Silicon nitride | 7–8 (polycrystalline, 1 MHz)<ref>
"Fine Ceramics" (PDF). Toshiba Materials.</ref><ref> "Material Properties Charts" (PDF). Ceramic Industry. 2013.</ref> |
Ammonia | 26, 22, 20, 17 (−80, −40, 0, +20 °C) |
Methanol | 30 |
Ethylene glycol | 37 |
Furfural | 42.0 |
Glycerol | 41.2, 47, 42.5 (0, 20, 25 °C) |
Water | 87.9, 80.2, 55.5 (0, 20, 100 °C)<ref> Archer, G. G.; Wang, P. (1990). "The Dielectric Constant of Water and Debye-Hückel Limiting Law Slopes". Journal of Physical and Chemical Reference Data. 19 (2): 371–411. doi:10.1063/1.555853.</ref> |
Hydrofluoric acid | 175, 134, 111, 83.6 (−73, −42, −27, 0 °C), |
Hydrazine | 52.0 (20 °C), |
Formamide | 84.0 (20 °C) |
Sulfuric acid | 84–100 (20–25 °C) |
Hydrogen peroxide | 128 aqueous–60 (−30–25 °C) |
Hydrocyanic acid | 158.0–2.3 (0–21 °C) |
Titanium dioxide | 86–173 |
Strontium titanate | 310 |
Barium strontium titanate | 500 |
Barium titanate<ref>
"Permittivity". schools.matter.org.uk. Archived from the original on 2016-03-11.</ref> || 1200–10,000 (20–120 °C) | |
Lead zirconate titanate | 500–6000 |
Conjugated polymers | 1.8–6 up to 100,000<ref>
Pohl, H. A. (1986). "Giant polarization in high polymers". Journal of Electronic Materials. 15 (4): 201. Bibcode:1986JEMat..15..201P. doi:10.1007/BF02659632.</ref> |
Calcium copper titanate | >250,000<ref>
Guillemet-Fritsch, S.; Lebey, T.; Boulos, M.; Durand, B. (2006). "Dielectric properties of CaCu3Ti4O12 based multiphased ceramics" (PDF). Journal of the European Ceramic Society. 26 (7): 1245. doi:10.1016/j.jeurceramsoc.2005.01.055.</ref> |