File:Impedance mismatch due to absorption.gif
From KYNNpedia
Impedance_mismatch_due_to_absorption.gif (360 × 359 pixels, file size: 2.44 MB, MIME type: image/gif, looped, 73 frames, 7.3 s)
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
DescriptionImpedance mismatch due to absorption.gif |
English: A positive imaginary part of the refractive index means the wave will be absorbed.
But, contrary to intuition, if you keep increasing absorption, the material will behave like a mirror, not a perfect absorber. |
Date | |
Source | https://twitter.com/j_bertolotti/status/1465294009325260802 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 12.0 code
\[Sigma] = 5.; \[Lambda]0 = 2.; k0 = N[(2 \[Pi])/\[Lambda]0]; \[Delta] = \[Lambda]0/10; \[CapitalDelta] = 40*\[Lambda]0;
\[Phi]in = Table[0, {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
dim = Dimensions[\[Phi]in][[1]]
d = \[Lambda]0/2; (*typical scale of the absorbing layer*)
Imn = Table[10 (E^-((x + \[CapitalDelta]/2)/d) + E^((x - \[CapitalDelta]/2)/d) + E^-((y + \[CapitalDelta]/2)/d) + E^((y - \[CapitalDelta]/2)/d)), {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
L = -1/\[Delta]^2*KirchhoffMatrix[GridGraph[{dim, dim}]]; (*Discretized Laplacian*)
ReMapC[x_] := RGBColor[(2 x - 1) UnitStep[x - 0.5], 0, (1 - 2 x) UnitStep[0.5 - x]];
\[Alpha][t_] := 2*t^3;
frames = Table[
Ren = Table[ If[y < 0, 1, 1 + I*\[Alpha][t] ], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
n = Ren + I Imn;
M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
sourcef[x_, y_] := E^(-((x + (\[CapitalDelta]/4) )^2/(2 \[Sigma]^2))) E^(I 1.5 x) E^(-((y + \[CapitalDelta]/2)^2/(2 (\[Lambda]0/2)^2))) E^(I k0 y);
\[Phi]in = Table[Chop[sourcef[x, y] ], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
ArrayPlot[
Transpose[((Re[\[Phi]s])[[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]]/0.012)^1], ColorFunction -> ReMapC , DataReversed -> True, Frame -> False, PlotRange -> {-1, 1}, ClippingStyle -> {Blue, Red}, Epilog -> {White, Line[{{0, 180}, {400, 180}}], Text[Style["n=1", Bold, 20], {30, 160}], Text[Style[ StringForm["n=1+i``", NumberForm[\[Alpha][t], {3, 2}]], Bold, 20], {60, 200}]}]
, {t, 0.000, 1, 0.03}];
ListAnimate[Join[frames, Table[frames[[-1]], 5], Reverse[frames]]]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Items portrayed in this file
depicts
29 November 2021
image/gif
2,555,875 byte
359 pixel
360 pixel
7221af9eb0d7f1cb9e6e5b7ae398572ed965d7e2
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 14:48, 30 November 2021 | 360 × 359 (2.44 MB) | wikimediacommons>Berto | Uploaded own work with UploadWizard |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
GIF file comment | Created with the Wolfram Language : www.wolfram.com |
---|