Template:Relative permittivity table

From KYNNpedia
Relative permittivities of some materials at room temperature under 1 kHz
Material εr
Vacuum 1 (by definition)
Air 1.00058986±0.00000050
(at STP, 900 kHz),<ref>

Hector, L. G.; Schultz, H. L. (1936). "The Dielectric Constant of Air at Radiofrequencies". Physics. 7 (4): 133–136. Bibcode:1936Physi...7..133H. doi:10.1063/1.1745374.</ref>

PTFE/Teflon 2.1
Polyethylene/XLPE 2.25
Polyimide 3.4
Polypropylene 2.2–2.36
Polystyrene 2.4–2.7
Carbon disulfide 2.6
BoPET 3.1<ref name="YoungFreedman2012">

Young, H. D.; Freedman, R. A.; Lewis, A. L. (2012). University Physics with Modern Physics (13th ed.). Addison-Wesley. p. 801. ISBN 978-0-321-69686-1.</ref>

Paper, printing 1.4<ref name=Borch01>

Borch, Jens; Lyne, M. Bruce; Mark, Richard E. (2001). Handbook of Physical Testing of Paper Vol. 2 (2 ed.). CRC Press. p. 348. ISBN 0203910494.</ref> (200 kHz)

Electroactive polymers 2–12
Mica 3–6<ref name="YoungFreedman2012"/>
Silicon dioxide 3.9<ref name=Gray&Meyer>

Gray, P. R.; Hurst, P. J.; Lewis, S. H.; Meyer, R. G. (2009). Analysis and Design of Analog Integrated Circuits (5th ed.). Wiley. p. 40. ISBN 978-0-470-24599-6.</ref>

Sapphire 8.9–11.1 (anisotropic)<ref name=Harman>

Harman, A. K.; Ninomiya, S.; Adachi, S. (1994). "Optical constants of sapphire (α‐Al2O3) single crystals". Journal of Applied Physics. 76 (12): 8032–8036. Bibcode:1994JAP....76.8032H. doi:10.1063/1.357922.</ref>

Concrete 4.5
Pyrex (glass) 4.7 (3.7–10)
Neoprene 6.7<ref name="YoungFreedman2012"/>
Natural rubber 7
Diamond 5.5–10
Salt 3–15
Melamine resin 7.2–8.4<ref>

"Dielectric Materials—The Dielectric Constant". Retrieved June 17, 2023.</ref>

Graphite 10–15
Silicone rubber 2.9–4<ref>

"Properties of silicone rubber". Azo Materials.</ref>

Silicon 11.68
GaAs 12.4<ref>

Fox, Mark (2010). Optical Properties of Solids (2 ed.). Oxford University Press. p. 283. ISBN 978-0199573370. </ref>

Silicon nitride 7–8 (polycrystalline, 1 MHz)<ref>

"Fine Ceramics" (PDF). Toshiba Materials.</ref><ref> "Material Properties Charts" (PDF). Ceramic Industry. 2013.</ref>

Ammonia 26, 22, 20, 17 (−80, −40, 0, +20 °C)
Methanol 30
Ethylene glycol 37
Furfural 42.0
Glycerol 41.2, 47, 42.5 (0, 20, 25 °C)
Water 87.9, 80.2, 55.5
(0, 20, 100 °C)<ref>

Archer, G. G.; Wang, P. (1990). "The Dielectric Constant of Water and Debye-Hückel Limiting Law Slopes". Journal of Physical and Chemical Reference Data. 19 (2): 371–411. doi:10.1063/1.555853.</ref>
for visible light: 1.77

Hydrofluoric acid 175, 134, 111, 83.6
(−73, −42, −27, 0 °C),
Hydrazine 52.0 (20 °C),
Formamide 84.0 (20 °C)
Sulfuric acid 84–100 (20–25 °C)
Hydrogen peroxide 128 aqueous–60
(−30–25 °C)
Hydrocyanic acid 158.0–2.3 (0–21 °C)
Titanium dioxide 86–173
Strontium titanate 310
Barium strontium titanate 500
Barium titanate<ref>

"Permittivity". schools.matter.org.uk. Archived from the original on 2016-03-11.</ref> || 1200–10,000 (20–120 °C)

Lead zirconate titanate 500–6000
Conjugated polymers 1.8–6 up to 100,000<ref>

Pohl, H. A. (1986). "Giant polarization in high polymers". Journal of Electronic Materials. 15 (4): 201. Bibcode:1986JEMat..15..201P. doi:10.1007/BF02659632.</ref>

Calcium copper titanate >250,000<ref>

Guillemet-Fritsch, S.; Lebey, T.; Boulos, M.; Durand, B. (2006). "Dielectric properties of CaCu3Ti4O12 based multiphased ceramics" (PDF). Journal of the European Ceramic Society. 26 (7): 1245. doi:10.1016/j.jeurceramsoc.2005.01.055.</ref>

References

<references group="" responsive="1"></references>