Brendel–Bormann oscillator model

From KYNNpedia
Revision as of 01:53, 11 July 2022 by imported>Citation bot (Add: s2cid. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | Category:Condensed matter physics | #UCB_Category 160/275)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Brendel-Bormann oscillator model. The real (blue dashed line) and imaginary (orange solid line) components of relative permittivity are plotted for a single oscillator model with parameters <math>\omega_{0}</math> = 500 cm<math>^{-1}</math>, <math>s</math> = 0.25 cm<math>^{-2}</math>, <math>\Gamma</math> = 0.05 cm<math>^{-1}</math>, and <math>\sigma</math> = 0.25 cm<math>^{-1}</math>.

The Brendel–Bormann oscillator model is a mathematical formula for the frequency dependence of the complex-valued relative permittivity, sometimes referred to as the dielectric function. The model has been used to fit to the complex refractive index of materials with absorption lineshapes exhibiting non-Lorentzian broadening, such as metals<ref name = "Rakić1998"/> and amorphous insulators,<ref name = "Brendel1992"/><ref name = "Naiman1984"/><ref name = "Kučírková1994"/><ref name = "Hobert1996"/> across broad spectral ranges, typically near-ultraviolet, visible, and infrared frequencies. The dispersion relation bears the names of R. Brendel and D. Bormann, who derived the model in 1992,<ref name = "Brendel1992"/> despite first being applied to optical constants in the literature by Andrei M. Efimov and E. G. Makarova in 1983.<ref name = "Efimov1983"/><ref name = "Efimov1985"/><ref name = "Efimov1996"/> Around that time, several other researchers also independently discovered the model.<ref name = "Naiman1984"/><ref name = "Kučírková1994"/><ref name = "Hobert1996"/> The Brendel-Bormann oscillator model is aphysical because it does not satisfy the Kramers–Kronig relations. The model is non-causal, due to a singularity at zero frequency, and non-Hermitian. These drawbacks inspired J. Orosco and C. F. M. Coimbra to develop a similar, causal oscillator model.<ref name = "Orosco2018"/><ref name = "Orosco2018a"/>

Mathematical formulation

The general form of an oscillator model is given by<ref name = "Brendel1992"/>

<math>\varepsilon(\omega) = \varepsilon_{\infty} + \sum_{j} \chi_{j}</math>

where

  • <math>\varepsilon</math> is the relative permittivity,
  • <math>\varepsilon_{\infty}</math> is the value of the relative permittivity at infinite frequency,
  • <math>\omega</math> is the angular frequency,
  • <math>\chi_{j}</math> is the contribution from the <math>j</math>th absorption mechanism oscillator.

The Brendel-Bormann oscillator is related to the Lorentzian oscillator <math>\left(\chi^{L}\right)</math> and Gaussian oscillator <math>\left(\chi^{G}\right)</math>, given by

<math>\chi_{j}^{L}(\omega; \omega_{0,j}) = \frac{s_{j}}{\omega_{0,j}^{2} - \omega^{2} - i \Gamma_{j} \omega} </math>
<math>\chi_{j}^{G}(\omega) = \frac{1}{\sqrt{2 \pi} \sigma_{j}} \exp{\left[ -\left( \frac{\omega}{\sqrt{2} \sigma_{j}} \right)^{2} \right]}</math>

where

  • <math>s_{j}</math> is the Lorentzian strength of the <math>j</math>th oscillator,
  • <math>\omega_{0,j}</math> is the Lorentzian resonant frequency of the <math>j</math>th oscillator,
  • <math>\Gamma_{j}</math> is the Lorentzian broadening of the <math>j</math>th oscillator,
  • <math>\sigma_{j}</math> is the Gaussian broadening of the <math>j</math>th oscillator.

The Brendel-Bormann oscillator <math>\left(\chi^{BB}\right)</math> is obtained from the convolution of the two aforementioned oscillators in the manner of

<math>\chi_{j}^{BB}(\omega) = \int_{-\infty}^{\infty} \chi_{j}^{G}(x-\omega_{0,j}) \chi_{j}^{L}(\omega; x) dx</math>,

which yields

<math>\chi_{j}^{BB}(\omega) = \frac{i \sqrt{\pi} s_{j}}{2 \sqrt{2} \sigma_{j} a_{j}(\omega)} \left[ w\left( \frac{a_{j}(\omega) - \omega_{0,j}}{\sqrt{2}\sigma_{j}} \right) + w\left( \frac{a_{j}(\omega) + \omega_{0,j}}{\sqrt{2}\sigma_{j}} \right) \right]</math>

where

  • <math>w(z)</math> is the Faddeeva function,
  • <math>a_{j} = \sqrt{\omega^{2}+i \Gamma_{j} \omega}</math>.

The square root in the definition of <math>a_{j}</math> must be taken such that its imaginary component is positive. This is achieved by:

<math>\Re\left( a_{j} \right) = \omega \sqrt{\frac{\sqrt{1+\left( \Gamma_{j}/\omega \right)^{2}}+1}{2}}</math>
<math>\Im\left( a_{j} \right) = \omega \sqrt{\frac{\sqrt{1+\left( \Gamma_{j}/\omega \right)^{2}}-1}{2}}</math>

References

<references group="" responsive="1"><ref name = "Brendel1992">Brendel, R.; Bormann, D. (1992). "An infrared dielectric function model for amorphous solids". Journal of Applied Physics. 71 (1): 1–6. Bibcode:1992JAP....71....1B. doi:10.1063/1.350737. Retrieved 2021-10-13.</ref> <ref name = "Efimov1983">Efimov, Andrei M.; Makarova, E. G. (1983). "[Vitreous state and the dispersion theory]". Proc. Seventh All-Union Conf. on Vitreous State (in русский). pp. 165–71.</ref> <ref name = "Efimov1985">Efimov, Andrei M.; Makarova, E. G. (1985). "[Dispersion equation for the complex equation constant of vitreous solids and dispersion analysis of their reflection spectra]". Fiz. Khim. Stekla [The Soviet Journal of Glass Physics and Chemistry] (in русский). 11 (4): 385–401.</ref> <ref name = "Naiman1984">Naiman, M. L.; Kirk, C. T.; Aucoin, R. J.; Terry, F. L.; Wyatt, P. W.; Senturia, S. D. (1984). "Effect of Nitridation of Silicon Dioxide on Its Infrared Spectrum". Journal of the Electrochemical Society. 131 (3): 637–640. Bibcode:1984JElS..131..637N. doi:10.1149/1.2115648. Retrieved 2021-10-20.</ref> <ref name = "Kučírková1994">Kučírková, A.; Navrátil, K. (1994). "Interpretation of Infrared Transmittance Spectra of SiO2 Thin Films". Applied Spectroscopy. 48 (1): 113–120. Bibcode:1994ApSpe..48..113K. doi:10.1366/0003702944027534. S2CID 98613649. Retrieved 2021-10-20.</ref> <ref name = "Hobert1996">Hobert, H.; Dunken, H. H. (1996). "Modelling of dielectric functions of glasses by convolution". Journal of Non-Crystalline Solids. 195 (1–2): 64–71. Bibcode:1996JNCS..195...64H. doi:10.1016/0022-3093(95)00517-X. Retrieved 2021-10-20.</ref> <ref name = "Rakić1998">Rakić, Aleksandar D.; Djurišić, Aleksandra B.; Elazar, Jovan M.; Majewski, Marian L. (1998). "Optical properties of metallic films for vertical-cavity optoelectronic devices". Applied Optics. 37 (22): 5271–5283. Bibcode:1998ApOpt..37.5271R. doi:10.1364/AO.37.005271. PMID 18286006. Retrieved 2021-10-13.</ref> <ref name = "Efimov1996">Efimov, A. M. (1996). "Quantitative IR spectroscopy: Applications to studying glass structure and properties". Journal of Non-Crystalline Solids. 203: 1–11. Bibcode:1996JNCS..203....1E. doi:10.1016/0022-3093(96)00327-4. Retrieved 2021-10-13.</ref> <ref name = "Orosco2018">Orosco, J.; Coimbra, C. F. M. (2018). "On a causal dispersion model for the optical properties of metals". Applied Optics. 57 (19): 5333–5347. Bibcode:2018ApOpt..57.5333O. doi:10.1364/AO.57.005333. PMID 30117825. S2CID 51760671. Retrieved 2021-10-14.</ref>

<ref name = "Orosco2018a">Orosco, J.; Coimbra, C. F. M. (2018). "Optical response of thin amorphous films to infrared radiation". Physical Review B. 97 (9): 094301. Bibcode:2018PhRvB..97i4301O. doi:10.1103/PhysRevB.97.094301. Retrieved 2021-10-14.</ref></references>

See also