Engine power
Engine power | |
---|---|
Common symbols | P |
SI unit | Kilowatt (kW) |
In SI base units | 1000 kg⋅m2⋅s−3 |
Derivations from other quantities | P = M·ω |
Dimension | <math>ML^2T^{-3}</math> |
Engine power is the power that an engine can put out. It can be expressed in power units, most commonly kilowatt, pferdestärke (metric horsepower), or horsepower. In terms of internal combustion engines, the engine power usually describes the rated power, which is a power output that the engine can maintain over a long period of time according to a certain testing method, for example ISO 1585. In general though, an internal combustion engine has a power take-off shaft (the crankshaft), therefore, the rule for shaft power applies to internal combustion engines: Engine power is the product of the engine torque and the crankshaft's angular velocity.
Definition
Power is the product of torque and angular velocity:<ref name="Böge_233">Böge 2017. p 233</ref>
Let:
- <math>P=</math> Power in Watt (W)
- <math>M=</math> Torque in Newton-metre (N·m)
- <math>n=</math> Crankshaft speed per Second (s−1)
- <math>\omega=</math> Angular velocity = <math>2\pi n</math>
Power is then:
- <math>P= M \cdot \omega</math>
In internal combustion engines, the crankshaft speed <math>n</math> is a more common figure than <math>\omega</math>, so we can use <math>2 \pi n</math> instead, which is equivalent to <math>\omega</math>:<ref>Fred Schäfer, Richard van Basshuysen 2017. p. 21</ref>
- <math>P= M \cdot 2 \pi \cdot n</math>
Note that <math>n</math> is per Second (s−1). If we want to use the common per Minute (min−1) instead, we have to divide <math>n</math> by 60:
- <math>P= M \cdot 2 \pi \cdot {n \over 60}</math>
Usage
Numerical value equations
The approximate numerical value equations for engine power from torque and crankshaft speed are:<ref name="Böge_233" /><ref name="Böge_154">Böge 1972. p 154</ref><ref name="Kemp_259">Kemp 1998. p 259</ref>
International unit system (SI)
Let:
- <math>P=</math> Power in Kilowatt (kW)
- <math>M=</math> Torque in Newton-metre (N·m)
- <math>n=</math> Crankshaft speed per Minute (min−1)
Then:
- <math>P= {M \cdot n \over 9550}</math>
Technical unit system (MKS)
- <math>P=</math> Power in Pferdestärke (PS)
- <math>M=</math> Torque in Kilopondmetre (kp·m)
- <math>n=</math> Crankshaft speed per Minute (min−1)
Then:
- <math>P= {M \cdot n \over 716}</math>
Imperial/U.S. Customary unit system
- <math>P=</math> Power in Horsepower (hp)
- <math>M=</math> Torque in Pound-force foot (lbf·ft)
- <math>n=</math> Crankshaft speed in Revolutions per Minute (rpm)
Then:
- <math>P= {M \cdot n \over 5252}</math>
Example
<graph>{"legends":[{"properties":{"title":{"fill":{"value":"#54595d"}},"labels":{"fill":{"value":"#54595d"}}},"stroke":"color","title":"","fill":"color"}],"scales":[{"type":"linear","name":"x","zero":false,"domain":{"data":"chart","field":"x"},"range":"width","nice":true},{"type":"linear","name":"y","domain":{"data":"chart","field":"y"},"zero":false,"range":"height","nice":true},{"domain":{"data":"chart","field":"series"},"type":"ordinal","name":"color","range":"category10"}],"version":2,"marks":[{"type":"group","marks":[{"properties":{"hover":{"stroke":{"value":"red"}},"update":{"stroke":{"scale":"color","field":"series"}},"enter":{"y":{"scale":"y","field":"y"},"x":{"scale":"x","field":"x"},"stroke":{"scale":"color","field":"series"},"interpolate":{"value":"monotone"},"strokeWidth":{"value":2.5}}},"type":"line"}],"from":{"data":"chart","transform":[{"groupby":["series"],"type":"facet"}]}}],"height":200,"axes":[{"type":"x","title":"Crankshaft speed (1/min)","scale":"x","format":"d","properties":{"title":{"fill":{"value":"#54595d"}},"grid":{"stroke":{"value":"#54595d"}},"ticks":{"stroke":{"value":"#54595d"}},"axis":{"strokeWidth":{"value":2},"stroke":{"value":"#54595d"}},"labels":{"fill":{"value":"#54595d"}}},"grid":false},{"type":"y","scale":"y","format":"d","properties":{"title":{"fill":{"value":"#54595d"}},"grid":{"stroke":{"value":"#54595d"}},"ticks":{"stroke":{"value":"#54595d"}},"axis":{"strokeWidth":{"value":2},"stroke":{"value":"#54595d"}},"labels":{"fill":{"value":"#54595d"}}},"grid":false}],"data":[{"format":{"parse":{"y":"integer","x":"integer"},"type":"json"},"name":"chart","values":[{"y":265,"series":"Torque (N·m)","x":1250},{"y":320,"series":"Torque (N·m)","x":1750},{"y":320,"series":"Torque (N·m)","x":2000},{"y":320,"series":"Torque (N·m)","x":2500},{"y":300,"series":"Torque (N·m)","x":3000},{"y":245,"series":"Torque (N·m)","x":4000},{"y":200,"series":"Torque (N·m)","x":4500},{"y":35,"series":"Power (kW)","x":1250},{"y":59,"series":"Power (kW)","x":1750},{"y":68,"series":"Power (kW)","x":2000},{"y":84,"series":"Power (kW)","x":2500},{"y":94,"series":"Power (kW)","x":3000},{"y":103,"series":"Power (kW)","x":4000},{"y":94,"series":"Power (kW)","x":4500}]}],"width":300}</graph>
The power curve (orange) can be derived from the torque curve (blue)
by multiplying with the crankshaft speed and dividing by 9550
A diesel engine produces a torque <math>M</math> of 234 N·m at <math>n</math> 4200 min−1, which is the engine's rated speed.
Let:
- <math>M= 234 \, N \cdot m</math>
- <math>n= 4200 \, {min}^{-1} = 70 \, s^{-1}</math>
Then:
- <math>234 \, N \cdot m \cdot 2 \pi \cdot 70 \, s^{-1} = 102,919 \, N \cdot m \cdot s^{-1} \approx 103 \, kW</math>
or using the numerical value equation:
- <math>{234 \cdot 4200 \over 9550} = 102.91 \approx 103</math>
The engine's rated power output is 103 kW.
Units
Kilowatt | Kilopondmetre per Second | Pferdestärke | Horsepower | Pound-force foot per minute | |
---|---|---|---|---|---|
1 kW (= 1000 kg·m2·s−3) = | 1 | 101.97 | 1.36 | 1.34 | 44,118 |
1 kp·m·s−1 = | 0.00980665 | 1 | 0.013 | 0.0132 | 433.981 |
1 PS = | 0.73549875 | 75 | 1 | 0.986 | 32,548.56 |
1 hp = | 0.7457 | 76.04 | 1.014 | 1 | 33,000 |
1 lbf·ft·min−1 = | 2.26·10−5 | 0.0023 | 2.99·10−5 | 3.03·10−5 | 1 |
See also
Bibliography
- Böge, Wolfgang (2017), Alfred Böge (ed.), Handbuch Maschinenbau (in German), Wiesbaden: Springer, ISBN 978-3-658-12528-8
{{citation}}
: CS1 maint: unrecognized language (link)
- Böge, Alfred (1972), Mechanik und Festigkeitslehre (in German), Wiesbaden: Vieweg, ISBN 9783528140106
{{citation}}
: CS1 maint: unrecognized language (link)
- Kemp, Albert W. (1998), Industrial Mechanics, American Technical Publishers, ISBN 9780826936905
- Fred Schäfer, Richard van Basshuysen, ed. (2017), Handbuch Verbrennungsmotor (in German), Wiesbaden: Springer, ISBN 978-3-658-10901-1
{{citation}}
: CS1 maint: unrecognized language (link)