List of equations in gravitation
This article summarizes equations in the theory of gravitation.
Definitions
Gravitational mass and inertia
A common misconception occurs between centre of mass and centre of gravity. They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts. They are equal if and only if the external gravitational field is uniform.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Centre of gravity | rcog (symbols vary) | ith moment of mass <math> \mathbf{m}_i = \mathbf{r}_i m_i \,\!</math>
Centre of gravity for a set of discrete masses: & = \frac{1}{M \left | \mathbf{g} \left ( \mathbf{r}_\mathrm{cog} \right ) \right |}\sum_i \mathbf{r}_i m_i \left | \mathbf{g} \left ( \mathbf{r}_i \right ) \right | \end{align}\,\!</math> Centre of gravity for a continuum of mass: & = \frac{1}{M \left | \mathbf{g} \left ( \mathbf{r}_\mathrm{cog} \right ) \right |}\int \mathbf{r} \left | \mathbf{g} \left ( \mathbf{r} \right ) \right | \mathrm{d}^n m \\ & = \frac{1}{M \left | \mathbf{g} \left ( \mathbf{r}_\mathrm{cog} \right ) \right |}\int \mathbf{r} \rho_n \left | \mathbf{g} \left ( \mathbf{r} \right ) \right | \mathrm{d}^n x \end{align} \,\!</math> |
m | [L] |
Standard gravitational parameter of a mass | μ | <math> \mu = Gm \,\!</math> | N m2 kg−1 | [L]3 [T]−2 |
Newtonian gravitation
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Gravitational field, field strength, potential gradient, acceleration | g | <math>\mathbf{g} = \mathbf{F}/m \,\!</math> | N kg−1 = m s−2 | [L][T]−2 |
Gravitational flux | ΦG | <math>\Phi_G = \int_S \mathbf{g} \cdot \mathrm{d}\mathbf{A} \,\!</math> | m3 s−2 | [L]3[T]−2 |
Absolute gravitational potential | Φ, φ, U, V | <math> U = - \frac{W_{\infty r}}{m} = - \frac{1}{m} \int_\infty^{r} \mathbf{F} \cdot \mathrm{d}\mathbf{r} = - \int_\infty^{r} \mathbf{g} \cdot \mathrm{d}\mathbf{r} \,\!</math> | J kg−1 | [L]2[T]−2 |
Gravitational potential difference | ΔΦ, Δφ, ΔU, ΔV | <math> \Delta U = - \frac{W}{m} = - \frac{1}{m} \int_{r_1}^{r_2} \mathbf{F} \cdot \mathrm{d}\mathbf{r} = - \int_{r_1}^{r_2} \mathbf{g} \cdot \mathrm{d}\mathbf{r} \,\!</math> | J kg−1 | [L]2[T]−2 |
Gravitational potential energy | Ep | <math> E_p = - W_{\infty r} \,\!</math> | J | [M][L]2[T]−2 |
Gravitational torsion field | Ω | <math> \boldsymbol{\Omega} = 2 \boldsymbol{\xi} \,\!</math> | Hz = s−1 | [T]−1 |
Gravitoelectromagnetism
In the weak-field and slow motion limit of general relativity, the phenomenon of gravitoelectromagnetism (in short "GEM") occurs, creating a parallel between gravitation and electromagnetism. The gravitational field is the analogue of the electric field, while the gravitomagnetic field, which results from circulations of masses due to their angular momentum, is the analogue of the magnetic field.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Gravitational torsion flux | ΦΩ | <math>\Phi_\Omega = \int_S \boldsymbol{\Omega} \cdot \mathrm{d}\mathbf{A} \,\!</math> | N m s kg−1 = m2 s−1 | [M]2 [T]−1 |
Gravitomagnetic field | H, Bg, B, ξ | <math> \mathbf{F} = m \left ( \mathbf{v} \times 2 \boldsymbol{\xi} \right ) \,\!</math> | Hz = s−1 | [T]−1 |
Gravitomagnetic flux | Φξ | <math>\Phi_\xi = \int_S \boldsymbol{\xi} \cdot \mathrm{d}\mathbf{A} \,\!</math> | N m s kg−1 = m2 s−1 | [M]2 [T]−1 |
Gravitomagnetic vector potential <ref name="Gravitation and Inertia" /> | h | <math> \mathbf{\xi} = \nabla \times \mathbf{h} \,\!</math> | m s−1 | [M] [T]−1 |
Equations
Newtonian gravitational fields
It can be shown that a uniform spherically symmetric mass distribution generates an equivalent gravitational field to a point mass, so all formulae for point masses apply to bodies which can be modelled in this way.
Physical situation | Nomenclature | Equations |
---|---|---|
Gravitational potential gradient and field |
|
<math> \mathbf{g} = - \nabla U </math>
<math> \Delta U = -\int_C \mathbf{g} \cdot d\mathbf{r}\,\!</math> |
Point mass | \mathbf{r} \right |^2 }\mathbf{\hat{r}} \,\!</math> | |
At a point in a local array of point masses | \mathbf{r}_i - \mathbf{r} \right |^2}\mathbf{\hat{r}}_i \,\!</math> | |
Gravitational torque and potential energy due to non-uniform fields and mass moments |
|
<math> \boldsymbol{\tau} = \int_{V_n} \mathrm{d} \mathbf{m} \times \mathbf{g} \,\!</math>
<math> U = \int_{V_n} \mathrm{d} \mathbf{m} \cdot \mathbf{g} \,\!</math> |
Gravitational field for a rotating body |
|
\mathbf{r} \right |^2} \mathbf{\hat{r}} - (\left | \boldsymbol{\omega} \right |^2\left | \mathbf{r} \right | \sin \phi )\mathbf{\hat{a}} \,\!</math> |
Gravitational potentials
General classical equations.
Physical situation | Nomenclature | Equations |
---|---|---|
Potential energy from gravity, integral from Newton's law | \mathbf{r} \right |} \approx m \left | \mathbf{g} \right | y\,\!</math> | |
Escape speed |
|
<math> v = \sqrt{\frac{2GM}{r}}\,\!</math> |
Orbital energy |
|
<math> \begin{align} E & = T + U \\
& = -\frac{G m M}{\left | \mathbf{r} \right |} + \frac{1}{2} m \left | \mathbf{v} \right |^2 \\ & = m \left ( - \frac{GM}{\left | \mathbf{r} \right |} + \frac{\left | \boldsymbol{\omega} \times \mathbf{r} \right |^2}{2} \right ) \\ & = - \frac{GmM}{2 \left | \mathbf{r} \right |} \end{align} \,\!</math> |
Weak-field relativistic equations
Physical situation | Nomenclature | Equations |
---|---|---|
Gravitomagnetic field for a rotating body | ξ = gravitomagnetic field | \mathbf{r} \right |^3}</math> |
See also
- Defining equation (physical chemistry)
- List of electromagnetism equations
- List of equations in classical mechanics
- List of equations in nuclear and particle physics
- List of equations in quantum mechanics
- List of equations in wave theory
- List of photonics equations
- List of relativistic equations
- Table of thermodynamic equations
Footnotes
Sources
- P.M. Whelan, M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
- P.A. Tipler, G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
- L.N. Hand, J.D. Finch (2008). Analytical Mechanics. Cambridge University Press. ISBN 978-0-521-57572-0.
- T.B. Arkill, C.J. Millar (1974). Mechanics, Vibrations and Waves. John Murray. ISBN 0-7195-2882-8.
- J.R. Forshaw, A.G. Smith (2009). Dynamics and Relativity. Wiley. ISBN 978-0-470-01460-8.
Further reading
- L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0.
- J.B. Marion, W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H.D. Young, R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.