Commercial animal cloning

From KYNNpedia
Revision as of 01:22, 26 February 2024 by imported>Viv20u
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Commercial animal cloning is the cloning of animals for commercial purposes, including animal husbandry, medical research, competition camels and horses, pet cloning, and restoring populations of endangered and extinct animals.<ref name=FDA>"A Primer on Cloning and Its Use in Livestock Operations". FDA. May 20, 2021.</ref> The practice was first demonstrated in 1996 with Dolly the sheep.

Cloning methods

Moving or copying all (or nearly all) genes from one animal to form a second, genetically nearly identical, animal is usually done using one of three methods: the Roslin technique, the Honolulu technique, or Artificial Twinning.<ref>Regina Bailey (Aug 3, 2021). "Cloning techniques".</ref> The first two of these involve a process known as somatic cell nuclear transfer.<ref name=":02">Keefer, Carol (July 21, 2015). "Artificial cloning of domestic animals". Proceedings of the National Academy of Sciences. 112 (29): 8874–8. Bibcode:2015PNAS..112.8874K. doi:10.1073/pnas.1501718112. PMC 4517265. PMID 26195770.</ref> In this process, an oocyte is taken from a surrogate mother and undergoes enucleation, a process that removes the nucleus from inside the oocyte. Somatic cells are then taken from the animal that is being cloned, transferred into the blank oocyte in order to provide genetic material, and fused with the oocyte using an electrical current. The oocyte is then activated and re-inserted into the surrogate mother. The result is the formation of an animal that is almost genetically identical to the animal the somatic cells were taken from.<ref name=":02" /><ref>Kim, Min Jung; Oh, Hyun Ju; Kim, Geon A; Setyawan, Erif Maha Nugraha; Choi, Yoo Bin; Lee, Seok Hee; Petersen-Jones, Simon M.; Ko, CheMyong J.; Lee, Byeong Chun (November 10, 2017). "Birth of clones of the world's first cloned dog". Scientific Reports. 7 (1): 15235. Bibcode:2017NatSR...715235K. doi:10.1038/s41598-017-15328-2. PMC 5681657. PMID 29127382.</ref> While somatic cell nuclear transfer was previously believed to only work using genetic material from somatic cells that were unfrozen or were frozen with cryoprotectant (to avoid cell damage caused by freezing), successful dog cloning in various breeds has now been shown using somatic cells from unprotected specimens that had been frozen for up to four days.<ref>Jeong, Yeonik; Olson, Olof P.; Lian, Cai; Lee, Eun Song; Jeong, Yeon Woo; Hwang, Woo Suk (2020-12-01). "Dog cloning from post-mortem tissue frozen without cryoprotectant". Cryobiology. 97: 226–230. doi:10.1016/j.cryobiol.2020.03.013. ISSN 0011-2240. PMID 32268132. S2CID 215610926.</ref> The third method of cloning involves embryo splitting, the process of taking the blastomeres from a very early animal embryo and separating them before they become differentiated in order to create two or more separate organisms. When using embryo splitting, cloning must occur before the birth of the animal, and clones grow up at the same time (in a similar fashion to monozygotic twins).<ref name=":02" />

Livestock cloning

The US Food and Drug Administration has concluded that "Food from cattle, swine, and goat clones is as safe to eat as food from any other cattle, swine, or goat."<ref name=FDA/> It has also been noted that the main use of agricultural clones is to produce breeding stock, not food. Clones allow farmers to upgrade the overall quality of their herds by producing more copies of the best animals in the herd. These animals are then used for conventional breeding, and the sexually reproduced offspring become the food producing animals. Tianjin animal cloning center was proposed in 2015 "to be put into use in the first half of 2016",<ref>"Animal cloning center to be built in Tianjin". Boyalife. Press release. November 23, 2015</ref> but as of 2022, no opening had been reported. The goals of cloning listed by the FDA include "disease resistance ... suitability to climate ... quality body type .. fertility ... and market preference (leanness, tenderness, color, size of various cuts, etc.)"<ref name=FDA/> Milk productivity is another desirable trait that cloning is used for, including in the case of cloned "supercows".<ref>Gan, Nectar (2 February 2023). "China says it successfully cloned 3 highly productive 'super cows' | CNN Business". CNN. Archived from the original on 16 February 2023. Retrieved 17 February 2023.</ref>

Medical uses

Organs from cloned pigs have been transplanted into human patients.<ref>Eric Spitznagel (March 5, 2022). "How pigs will save thousands of human lives through organ transplants". New York Post.</ref>[better source needed] (See Xenotransplantation)

Cancer-sniffing dogs have also been cloned. A review concluded that "qualified elite working dogs can be produced by cloning a working dog that exhibits both an appropriate temperament and good health."<ref>Kim, Min Jung; Oh, Hyun Ju; Hwang, Sun Young; Hur, Tai Young; Lee, Byeong Chun (1 September 2018). "Health and temperaments of cloned working dogs". Journal of Veterinary Science. 19 (5): 585–591. doi:10.4142/jvs.2018.19.5.585. ISSN 1229-845X. PMC 6167335. PMID 29929355.</ref>

Other working animals with high performance

Cloning of super sniffer dogs for airports was reported in 2011, four years after the dog that served as their genetic donor retired.<ref>Webster, Becky Anderson,George (30 September 2011). "'Super clone' sniffer dogs: Coming to an airport near you? | CNN Business". CNN. Retrieved 8 March 2023.{{cite news}}: CS1 maint: multiple names: authors list (link)</ref> Cloning of a successful rescue dog was reported in 2009<ref>Pilkington, Ed (18 June 2009). "Dog hailed as hero cloned by California company". The Guardian. Retrieved 8 March 2023.</ref> and of a police dog in 2019.<ref>"China's first cloned police dog reports for duty". South China Morning Post. 19 March 2019. Retrieved 8 March 2023.</ref>

Endangered and extinct animals

Template:Importance section

The only extinct animal to be cloned as of 2022 is a Pyrenean ibex, born on July 30, 2003, in Spain, which died minutes later due to physical defects in the lungs.<ref name=r5>J. Folch; J. Cocero; M. J. Chesne; P. Alabart; J. K. Dominguez; V. Congnie; Y. Roche; A. Fernández-Árias; A. Marti; J. I. Sánchez; P. Echegoyen; E. Beckers; J. F. Sánchez; A. Bonastre; X. Vignon (2009). "First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning". Theriogenology. 71 (6): 1026–1034. doi:10.1016/j.theriogenology.2008.11.005. PMID 19167744.</ref><ref name=Zimmer>Zimmer, Carl. "Bringing Them Back To Life". Archived from the original on May 1, 2013. Retrieved September 13, 2014.</ref>

Some animals have been cloned to add genetic diversity to endangered species with small remaining populations, thereby avoiding inbreeding depression. Centers performing this include ViaGen, aided by the San Diego Frozen Zoo, and Revive & Restore.<ref name=endangered/> This is also referred to as "conservation cloning".<ref>Marshall, Andrew (2000-11-01). "Cloning for conservation". Nature Biotechnology. 18 (11): 1129. doi:10.1038/81057. ISSN 1546-1696. PMID 11062403.</ref><ref>"Debating Science|Conservation Cloning: Feasible Way to Save Species". blogs.umass.edu. December 2, 2015. Archived from the original on 2019-02-19. Retrieved 2021-03-07.</ref> Two examples are the black-footed ferret and Przewalski's horse.<ref name=endangered>"Scientists clone the first U.S. endangered species". Associated Press. Feb 18, 2021.</ref>

In 2022, the world's first cloned Arctic wolf "Maya" was born in Beijing by Sinogene. Although Arctic wolves are no longer listed by the IUCN Red List as an endangered species, the technique can be used to help other animals at risk of extinction, such as Mexican gray wolves and red wolves. The team of Sinogene plans to restore lost species or boost numbers in endangered animal populations.<ref>Knapton, Sarah (28 September 2022). "Beagle gives birth to world's first cloned Arctic wolf". The Telegraph. The Telegraph. Retrieved 2023-04-27.</ref>

In a recent study using sturgeons (species of fish in the Acipenseridae family), scientists have made improvements to a technique known as somatic nuclear cell transfer, with the ultimate goal being to save endangered species. Sturgeons are endangered due to the high levels of poaching, increased destruction to habitats, water pollution, and overfishing. The somatic nuclear cell transfer technique is a well-known cloning method that has been used for years but focuses on species that are thriving rather than endangered or extinct species. This technique usually uses a single somatic donor cell with a single manipulation and inserts it into a recipient egg of the species of interest. It has recently been found that the position by which that somatic cell is located inside the recipient is very important in order to successfully clone a species. By making adjustments to the original method of using a single somatic cell and instead use multiple somatic donor cells to insert into the recipient egg, the likeliness of the somatic donor cells being in the crucial position on the egg will increase tremendously. This increase will then result in higher success rates with cloning. There is ongoing research using this improved method, but from the data collected thus far, it seems to be a reasonable method to continue and soon be able to help stop species like the sturgeons from becoming endangered and possibly stop extinction from occurring.<ref>Fatira, Effrosyni; Havelka, Miloš; Labbé, Catherine; Depincé, Alexandra; Pšenička, Martin; Saito, Taiju (2019-07-18). "A newly developed cloning technique in sturgeons; an important step towards recovering endangered species". Scientific Reports. 9 (1): 10453. Bibcode:2019NatSR...910453F. doi:10.1038/s41598-019-46892-4. ISSN 2045-2322. PMC 6639416. PMID 31320687.</ref>

Cloning long-extinct animals using current methods is impossible because DNA begins to denature after death, meaning the entire genome of an extinct species is not available to be reproduced. However, new studies using genome editing have suggested it may be possible to "bring back" traits of extinct species by incorporating genes from the extinct species into the genome of a closely related living organism. Currently, George Church's lab at Harvard University's Wyss Institute is conducting research into genetically modifying Asian elephants to express genes from the extinct woolly mammoth.<ref>Shapiro, Beth (2015-11-04). "Mammoth 2.0: will genome engineering resurrect extinct species?". Genome Biology. 16 (1): 228. doi:10.1186/s13059-015-0800-4. ISSN 1474-760X. PMC 4632474. PMID 26530525.</ref> Their goals in doing this are to expand the habitat available to Asian elephants and reestablish the ecological interactions woolly mammoths played a role in prior to their extinction.

History and commercialization

ViaGen began by offering cloning to the livestock and equine industry in 2003,<ref>Castillo, Michelle (2018-03-08). "This woman paid $50,000 to clone her dead chihuahua...twice". CNBC. Retrieved 2020-06-06.</ref> and later as ViaGen Pets included cloning of cats and dogs in 2016.<ref>"Viagen Pets take animal cloning from research lab to marketplace". www.wtoc.com. 18 May 2020. Retrieved 2020-06-06.</ref> ViaGen's subsidiary, start licensing, owns a cloning patent which is licensed to their only competitor as of 2018, who also offers animal cloning services.<ref>Baron, Jessica. "If You Love Animals, Don't Clone Your Pet". Forbes. Retrieved 2020-06-06.</ref> (Viagen is a subsidiary of Precigen.<ref>"PGEN annual report" (PDF). 2019.</ref>)

The first commercially cloned pet was a cat named Little Nicky, produced in 2004 by Genetic Savings & Clone for a north Texas woman for the fee of US$50,000.<ref name="MITTechRev">Roush, Wade (February 17, 2006). "Genetic Savings and Clone: No Pet Project". MIT Technology Review.</ref> On May 21, 2008, BioArts International<ref>BioArts International</ref> announced a limited commercial dog cloning service (through a program it called Best Friends Again) in partnership with a Korean company named Sooam Biotech. This program came after the announcement of the successful cloning of a family dog named Missy, an achievement widely publicized in the Missyplicity Project. In September 2009, BioArts announced the end of its dog cloning service.<ref name="Hawthorne">Hawthorne, Lou (10 September 2009). "Six Reasons We're No Longer Cloning Dogs". Bioarts. Retrieved 23 March 2016.</ref> In July 2008, the Seoul National University (co-parents of Snuppy, reputedly the world's first cloned dog in 2005) created five clones of a dog named Booger for its Californian owner. The woman paid $50,000 for this service.<ref>Arnold, Paul (14 September 2009). "Animal Cloning: Pet Cloning Controversy". Retrieved 23 March 2016.</ref>

Sooam Biotech continued developing proprietary techniques for cloning dogs<ref>Agence France-Presse (September 20, 2009). "South Korea scientist wins dog cloning court battle". The China Post.</ref> based on a licence from ViaGen's subsidiary, stART Licensing (which owned the original patent for the process of animal cloning<ref name="Bloomberg">Dean, Josh (22 October 2014). "For $100,000, You Can Clone Your Dog". Bloomberg business. Retrieved 26 February 2016.</ref>). (Although the animal itself is not patentable, the process is protected by a patent).<ref>Kelly Servick (14 May 2014). "No Patent for Dolly the Cloned Sheep, Court Rules".</ref> Sooam created cloned puppies for owners whose dogs had died, charging $100,000 per clone.<ref name="Guardian"/><ref name="Sooam">Baer, Drake (8 September 2015). "This Korean lab has nearly perfected dog cloning, and that's just the start". Tech Insider, Innovation. Retrieved 27 February 2016.</ref> Sooam Biotech was reported to have cloned approximately 700 dogs by 2015<ref name="Guardian">Taylor, Diane (24 December 2015). "UK couple have dead dog cloned in South Korea". The Guardian. Retrieved 24 February 2016.</ref> and to be producing 500 cloned embryos of various breeds a day in 2016.<ref name="NewScientist500">Zastrow, Mark (8 February 2016). "Inside the cloning factory that creates 500 new animals a day". New Scientist. Retrieved 23 February 2016.</ref> In 2015, the longest period after which Sooam Biotech could clone a puppy was 12 days from the death of the original pet dog.<ref name=Boxer2015>"British couple celebrate after birth of first cloned puppy of its kind". The Guardian. 26 December 2015. Retrieved 27 December 2015.</ref> Sinogene Biotechnology created the first Chinese clone dog in 2017 before commercializing the cloning service and joining in the pet cloning market.<ref>"Chinese firm clones gene-edited dog in bid to treat cardiovascular disease". CNN. 2017-12-27. Retrieved 2020-07-09.</ref> In 2019, Sinogene successfully created the first Chinese cloned cat.<ref>"His Cat's Death Left Him Heartbroken. So He Cloned It". The New York Times. 2019-09-04. Retrieved 2020-07-09.</ref> In June 2022, "Zhuang Zhuang" was cloned by the Beijing laboratory Sinogene. He is the first from the "warmblood" group of breeds to be born in China and to be officially approved by the China Horse Industry Association.<ref>"Cloned horse raises hopes for equestrian sports in China". 12 January 2023. Retrieved 2023-04-27.</ref>

Controversies

Animal welfare

The mortality rate for cloned animals is higher than for those born of natural processes. This includes a discrepancy pre-birth, during birth, and after birth in survival rates and quality of life, leading to ethical concerns.<ref>Heðinsdóttir, K.; Kondrup, S.; Röcklinsberg, H.; Gjerris, M. (2018). "Can Friends be Copied? Ethical Aspects of Cloning Dogs as Companion Animals". Journal of Agricultural and Environmental Ethics. 31 (1): 17–29. doi:10.1007/s10806-018-9706-y. ISSN 1187-7863. S2CID 148814791.</ref> Many of these discrepancies are thought to come from maternal mRNA already present in the oocyte prior to the transfer of genetic material as well as from DNA methylation, both of which contribute to the development of the animal in the womb of the surrogate.<ref name=":02"/> Some common issues seen with cloned animals are shortened telomeres, the repetitive end sequences of DNA whose decreasing length over the lifespan of an organism have been associated with aging;<ref name=":1">Ibtisham, F.; Fahd Qadir, M. M.; Xiao, M.; An, L. (2017). "Animal cloning applications and issues". Russian Journal of Genetics. 53 (9): 965–971. doi:10.1134/s102279541709006x. ISSN 1022-7954. S2CID 19932688.</ref> large offspring syndrome, the abnormal size of cloned individuals due to epigenetic (gene expression) changes; and methylation patterns of genetic material that are so abnormal compared to standard embryos of the species being cloned as to be incompatible with life.<ref name=":02"/>

Pet cloning

While pet cloning is sometimes advertised as a prospective method for re-gaining a deceased companionship animal,<ref>"Pet Cloning". www.petcloning.eu. Retrieved 2024-01-02.</ref> pet cloning does not result in animals that are exactly like the previous pet (in looks or personality).<ref>Heðinsdóttir, K.; Kondrup, S.; Röcklinsberg, H.; Gjerris, M. (2018-02-01). "Can Friends be Copied? Ethical Aspects of Cloning Dogs as Companion Animals". Journal of Agricultural and Environmental Ethics. 31 (1): 17–29. doi:10.1007/s10806-018-9706-y. ISSN 1573-322X. S2CID 148814791.</ref> Although the animal in question is cloned, there are still phenotypical differences that may affect its appearance or health. This issue was brought to light in the cloning of a cat named Rainbow. Rainbow's clone, later named CC, was genetically identical to Rainbow, yet CC's coloring patterns were not the same due to the development of the kitten inside the womb as well as random genetic disparities in the clone such as variable X-chromosome inactivation.<ref>Shin, Taeyoung; Kraemer, Duane; Pryor, Jane; Liu, Ling; Rugila, James; Howe, Lisa; Buck, Sandra; Murphy, Keith; Lyons, Leslie; Westhusin, Mark (February 14, 2002). "A cat cloned by nuclear transplantation". Nature. 415 (6874): 859. doi:10.1038/nature723. PMID 11859353. S2CID 4431855.</ref>

Despite its controversies, the study of pet cloning holds the potential to contribute to scientific, veterinary, and medical knowledge, and it is a potential resource in efforts to preserve endangered cousins of the cat and dog.<ref name=":1" />

In 2005, California Assembly Member Lloyd Levine introduced a bill to ban the sale or transfer of pet clones in California.<ref>Mott, Maryann (February 23, 2005). "Pet-Clone Sales Spur Call for Ban". National Geographic News. Archived from the original on February 26, 2005. Retrieved April 12, 2018.</ref> That bill was voted down.<ref>"Cloned pets escape retail sales ban in California". dvm360 magazine. dvm360. July 1, 2005. Retrieved April 12, 2018.</ref>

See also

References

<references group="" responsive="1"></references>