File:Mandelbrot sequence new.gif

From KYNNpedia

Mandelbrot_sequence_new.gif(320 × 240 pixels, file size: 23.64 MB, MIME type: image/gif, looped, 475 frames)

Note: Due to technical limitations, thumbnails of high resolution GIF images such as this one will not be animated.

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
English: Used Zom-B's library with my own code and a golden gradient (similar to the default gradient used in Ultra Fractal). Each scene is 6x supersampled to remove sharp edges. Took... a while to render

Links to Java source code: Zom-B version project directory containing DoubleDouble class, adjustments made by Simpsons Contributor to keep max iteration and anti-aliasing factor at more conservative values for faster rendering. New golden gradient added. Includes animated gif encoder.

Zom-B version

Mandelbrot zoom with center at (-0.743643887037158704752191506114774, 0.131825904205311970493132056385139) and magnification 1 .. 3.18 × 1031 created using my own Java program, using:

  • Double-double precision (self-written library),
  • Adaptive maxiter depending on the inverse square root of the magnification
  • Adaptive per-pixel antialiasing strength depending on the maximum iteration of nearby pixels (15x AA max), (during antialiasing phase, maxiter is quadrupled),
  • Iteration smoothing,
  • New warm gradient which also gives clearer details, applied to the base-2 log of the smoothed iteration number,
  • Modified periodicity checking algorithm from Fractint, for significant speedup,
  • Main cardioid and period-2 bulb checking for another speedup,
  • Multi-threaded calculation
  • 136 hours calculation time on two PC's (6 cores combined)
Čeština: Mandelbrotova množina se středem v souřadnicích (-0.743643887037158704752191506114774, 0.131825904205311970493132056385139) a následném zvětšení 3.18 × 1031.
Македонски: Манделбротово множество со средиште во (-0,743643887037158704752191506114774, 0,131825904205311970493132056385139) и увеличување од 1 .. 3,18 × 1031.
Polski: Przybliżenie zbioru Mandelbrota z powiększeniem zmieniającym się od 1 do 3,18 × 1031.
Русский: Множество Мандельброта, координаты центра: -0,743643887037158704752191506114774, 0,131825904205311970493132056385139, увеличение от 1 до 3,18·1031
Bahasa Indonesia: Himpunan Mandelbrot adalah himpunan dari bilangan kompleks yang digunakan sebagai fungsi tidak menyimpang ketika iterasi dari , yaitu, urutan dari , , dll, tetap dibatasi dalam nilai absolut.
Date 27 January 2010 (original upload date)
Source Transferred from en.wikipedia to Commons by Franklin.vp using CommonsHelper.
Author Simpsons contributor at English Wikipedia
Other versions

Assessment

Picture of the year
Picture of the year
Featured picture

Wikimedia CommonsWikipedia

This is a featured picture on Wikimedia Commons (Featured pictures) and is considered one of the finest images. See its nomination here.

 This is a featured picture on the English language Wikipedia (Featured pictures) and is considered one of the finest images. See its nomination here.
 This is a featured picture on the Turkish language Wikipedia (Seçkin resimler) and is considered one of the finest images. See its nomination here.

If you have an image of similar quality that can be published under a suitable copyright license, be sure to upload it, tag it, and nominate it.

Media of the day This file was selected as the media of the day for 04 June 2019. It was captioned as follows:
English: Mandelbrot set zoom with center at (-0.743643887037158704752191506114774, 0.131825904205311970493132056385139) and magnification 1 .. 3.18 × 1031
Other languages
Čeština: Mandelbrotova množina se středem v souřadnicích (-0.743643887037158704752191506114774, 0.131825904205311970493132056385139) a následném zvětšení 3.18 × 1031.
English: Mandelbrot set zoom with center at (-0.743643887037158704752191506114774, 0.131825904205311970493132056385139) and magnification 1 .. 3.18 × 1031
Македонски: Манделбротово множество со средиште во (-0,743643887037158704752191506114774, 0,131825904205311970493132056385139) и увеличување од 1 .. 3,18 × 1031.
Polski: Przybliżenie zbioru Mandelbrota z powiększeniem zmieniającym się od 1 do 3,18 × 1031.
Русский: Множество Мандельброта, координаты центра: -0,743643887037158704752191506114774, 0,131825904205311970493132056385139, увеличение от 1 до 3,18·1031

Licensing

Public domain This work has been released into the public domain by its author, Simpsons contributor at English Wikipedia. This applies worldwide.
In some countries this may not be legally possible; if so:
Simpsons contributor grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Source code

Original upload log

The original description page was here. All following user names refer to en.wikipedia.
  • 2010-01-27 19:40 Simpsons contributor 320×240× (24785806 bytes) Larger.
  • 2009-05-06 17:17 Zom-B 180×135× (10382989 bytes) Mandelbrot zoom with center at (-0.743643887037158704752191506114774, 0.131825904205311970493132056385139) and magnification 1 .. 1{{e|30}} created using my own Java program, using: *[[http://en.wikipedia.org/wiki/Talk:Floating_point#No_mention_of_Double-
  • 2008-09-21 19:40 Simpsons contributor 180×135× (4778226 bytes)
  • 2008-09-21 19:30 Simpsons contributor 180×135× (777581 bytes) Mandelbrot zoom sequence
  • 2008-08-31 13:44 Simpsons contributor 256×192× (7234937 bytes) Self made with Java. See userpage for source code.

Captions

Zoom in on the Mandelbrot Set

Items portrayed in this file

depicts

27 January 2010

image/gif

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current12:12, 31 January 2010Thumbnail for version as of 12:12, 31 January 2010320 × 240 (23.64 MB)wikimediacommons>Franklin.vp== Summary == ===Simpsons Contributor version=== Used Zom-B's library with my own code and a golden gradient (similar to the default gradient used in Ultra Fractal). Each scene is 6x supersampled to remove sharp edges. Took... <b>a while</b> to render =

The following page uses this file: