Abraham–Minkowski controversy

From KYNNpedia

The Abraham–Minkowski controversy is a physics debate concerning electromagnetic momentum within dielectric media.<ref>Leonhardt, Ulf (2006). "Momentum in an uncertain light". Nature. 444 (7121): 823–824. Bibcode:2006Natur.444..823L. doi:10.1038/444823a. PMID 17167461. S2CID 33682507.</ref><ref name=McDonald1>McDonald, K. T. (2017). "Bibliography on the Abraham–Minkowski Debate" (PDF).</ref> Two equations were first suggested by Hermann Minkowski (1908)<ref name=Minkowski1>Minkowski, H. (1908). "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern" . Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111.

</ref> and Max Abraham (1909)<ref name=Abraham1>Abraham, M. (1909). "Zur Elektrodynamik bewegter Körper" . Rendiconti del Circolo Matematico di Palermo. 28: 1–28. doi:10.1007/bf03018208. S2CID 121681939.

</ref><ref name=Abraham2>Abraham, M. (1910). "Sull'Elletrodinamica di Minkowski". Rendiconti del Circolo Matematico di Palermo. 30: 33–46. doi:10.1007/bf03014862. S2CID 121524871.

</ref> for this momentum. They predict different values, from which the name of the controversy derives.<ref name=Pfeifer1>Pfeifer, R. N. C.; Nieminen, T. A; Heckenberg, N. R.; Rubinsztein-Dunlop, H. (2007). "Colloquium: Momentum of an electromagnetic wave in dielectric media". Reviews of Modern Physics. 79 (4): 1197–1216. arXiv:0710.0461. Bibcode:2007RvMP...79.1197P. CiteSeerX 10.1.1.205.8073. doi:10.1103/RevModPhys.79.1197. See also: Pfeifer, Robert N. C.; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina (2009). "Erratum: Colloquium: Momentum of an electromagnetic wave in dielectric media [Rev. Mod. Phys. 79, 1197 (2007)]". Reviews of Modern Physics. 81 (1): 443. arXiv:0710.0461. Bibcode:2009RvMP...81..443P. doi:10.1103/RevModPhys.81.443.</ref> Experimental support has been claimed for both.<ref>A. Ashkin; J. M. Dziedzic (1973). "Radiation Pressure on a Free Liquid Surface". Physical Review Letters. 30 (4): 139–142. doi:10.1103/PhysRevLett.30.139.</ref><ref>Gretchen K. Campbell; Aaron E. Leanhardt; Jongchul Mun; Micah Boyd; Erik W. Streed; Wolfgang Ketterle; David E. Pritchard (2005). "Photon Recoil Momentum in Dispersive Media". Physical Review Letters. 94 (17): 170403. arXiv:cond-mat/0502014. doi:10.1103/PhysRevLett.94.170403. PMID 15904272. S2CID 2033128.</ref><ref>Weilong She; Jianhui Yu; Raohui Feng (2008). "Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light". Physical Review Letters. 101 (24): 243601. arXiv:0806.2442. doi:10.1103/PhysRevLett.101.243601. PMID 19113619. S2CID 9630919.</ref><ref name=Dacey1>Dacey, J. (9 January 2009). "Experiment resolves century-old optics mystery". Physics World. Retrieved 18 April 2021.</ref>

The two points of view have different physical interpretations and thus neither need be more correct than the other.<ref>Milonni, Peter W.; Boyd, Robert W. (2010-12-31). "Momentum of Light in a Dielectric Medium" (PDF). Advances in Optics and Photonics. 2 (4): 519. doi:10.1364/AOP.2.000519. ISSN 1943-8206. Retrieved 2023-07-19.</ref> David J. Griffiths argues that, in the presence of matter, only the total stress–energy tensor carries unambiguous physical significance; how one apportions it between an "electromagnetic" part and a "matter" part depends on context and convenience.<ref name=Griffiths1>Griffiths, D. J. (2012). "Resource Letter EM-1: Electromagnetic Momentum". American Journal of Physics. 80 (1): 7–18. Bibcode:2012AmJPh..80....7G. doi:10.1119/1.3641979.</ref>

Several papers have claimed to have resolved this controversy.<ref name=gordon> Gordon, J. P. (1973). "Radiation forces and momenta in dielectric media". Physical Review A. 8 (1): 14–21. Bibcode:1973PhRvA...8...14G. doi:10.1103/physreva.8.14.</ref><ref name=Nelson>Nelson, D. F. (1991). "Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski–Abraham controversy". Physical Review A. 44 (6): 3985–3996. Bibcode:1991PhRvA..44.3985N. doi:10.1103/physreva.44.3985. PMID 9906414.</ref><ref name="Mansuripur2010">Mansuripur, M. (2010). "Resolution of the Abraham–Minkowski controversy". Optics Communications. 283 (10): 1997–2005. arXiv:1208.0872. Bibcode:2010OptCo.283.1997M. doi:10.1016/j.optcom.2010.01.010. S2CID 118347570.</ref><ref name=Barnett1>Barnett, S. (2010). "Resolution of the Abraham–Minkowski Dilemma" (PDF). Physical Review Letters. 104 (7): 070401. Bibcode:2010PhRvL.104g0401B. doi:10.1103/PhysRevLett.104.070401. PMID 20366861.</ref><ref>Mikko Partanen; Teppo Häyrynen; Jani Oksanen; Jukka Tulkki (2017). "Photon mass drag and the momentum of light in a medium". Physical Review A. 95 (6): 063850. arXiv:1603.07224. Bibcode:2017PhRvA..95f3850P. doi:10.1103/PhysRevA.95.063850. S2CID 53420774.</ref><ref>Mikko Partanen; Jukka Tulkki (2021). "Covariant theory of light in a dispersive medium". Physical Review A. 104 (2): 023510. arXiv:2105.04053. Bibcode:2021PhRvA.104b3510P. doi:10.1103/PhysRevA.104.023510. S2CID 234336055.</ref>

The controversy is still of importance in physics beyond the Standard Model where electrodynamics gets modifications, like in the presence of axions.<ref>Tobar, Michael E.; McAllister, Ben T.; Goryachev, Maxim (2022-02-15). "Poynting vector controversy in axion modified electrodynamics". Physical Review D. 105 (4): 045009. arXiv:2109.04056. doi:10.1103/PhysRevD.105.045009. ISSN 2470-0010. S2CID 246430570.</ref>

References

<references group="" responsive="0"></references>

External links