List of equations in nuclear and particle physics
Nuclear physics |
---|
|
This article summarizes equations in the theory of nuclear physics and particle physics.
Definitions
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Number of atoms | N = Number of atoms remaining at time t N0 = Initial number of atoms at time t = 0 |
<math> N_0 = N + N_D \,\!</math> | dimensionless | dimensionless |
Decay rate, activity of a radioisotope | A | <math> A = \lambda N\,\!</math> | Bq = Hz = s−1 | [T]−1 |
Decay constant | λ | <math> \lambda = A/N \,\!</math> | Bq = Hz = s−1 | [T]−1 |
Half-life of a radioisotope | t1/2, T1/2 | Time taken for half the number of atoms present to decay
<math> t \rightarrow t + T_{1/2} \,\!</math> |
s | [T] |
Number of half-lives | n (no standard symbol) | <math> n = t / T_{1/2} \,\!</math> | dimensionless | dimensionless |
Radioisotope time constant, mean lifetime of an atom before decay | τ (no standard symbol) | <math> \tau = 1 / \lambda \,\!</math> | s | [T] |
Absorbed dose, total ionizing dose (total energy of radiation transferred to unit mass) | D can only be found experimentally | N/A | Gy = 1 J/kg (Gray) | [L]2[T]−2 |
Equivalent dose | H | <math> H = DQ \,\!</math>
Q = radiation quality factor (dimensionless) |
Sv = J kg−1 (Sievert) | [L]2[T]−2 |
Effective dose | E | <math> E = \sum_j H_jW_j \,\!</math>
Wj = weighting factors corresponding to radiosensitivities of matter (dimensionless) <math> \sum_j W_j = 1 \,\!</math> |
Sv = J kg−1 (Sievert) | [L]2[T]−2 |
Equations
Nuclear structure
Physical situation | Nomenclature | Equations |
---|---|---|
Mass number |
|
<math>A = Z+N\,\!</math> |
Mass in nuclei |
|
|
Nuclear radius | r0 ≈ 1.2 fm | <math>r=r_0A^{1/3} \,\!</math>
hence (approximately)
|
Nuclear binding energy, empirical curve | Dimensionless parameters to fit experiment:
|
<math>\begin{align} E_B = & a_v A - a_s A^{2/3} - a_c Z(Z-1)A^{-1/3} \\
& -a_a (N-Z)^2 A^{-1} + 12\delta(N,Z)A^{-1/2} \\ \end{align}</math> where (due to pairing of nuclei)
|
Nuclear decay
Physical situation | Nomenclature | Equations |
---|---|---|
Radioactive decay |
|
Statistical decay of a radionuclide:
<math>\frac{\mathrm{d} N}{\mathrm{d} t} = - \lambda N </math> <math>N = N_0e^{-\lambda t}\,\!</math> |
Bateman's equations | <math> c_i = \prod_{j=1, i\neq j}^D \frac{\lambda_j}{\lambda_j - \lambda_i} </math> | <math> N_D = \frac{N_1(0)}{\lambda_D} \sum_{i=1}^D \lambda_i c_i e^{-\lambda_i t} </math> |
Radiation flux |
|
<math>I = I_0e^{-\mu x}\,\!</math> |
Nuclear scattering theory
The following apply for the nuclear reaction:
- a + b ↔ R → c
in the centre of mass frame, where a and b are the initial species about to collide, c is the final species, and R is the resonant state.
Physical situation | Nomenclature | Equations |
---|---|---|
Breit-Wigner formula |
|
Cross-section:
<math>\sigma(E) = \frac{\pi g}{k^2}\frac{\Gamma_{ab}\Gamma_c}{(E-E_0)^2+\Gamma^2/4}</math> Spin factor: <math>g = \frac{2J+1}{(2s_a+1)(2s_b+1)}</math> Total width: <math>\Gamma = \Gamma_{ab} + \Gamma_c</math> Resonance lifetime: <math>\tau = \hbar/\Gamma </math> |
Born scattering |
|
Differential cross-section:
<math>\frac{d\sigma}{d\Omega} = \left|\frac{2\mu}{\hbar^2}\int_0^\infty\frac{\sin(\Delta kr)}{\Delta kr}V(r)r^2dr\right|^2 </math> |
Mott scattering |
|
Differential cross-section (for identical particles in a coulomb potential, in centre of mass frame):
<math>\frac{d\sigma}{d\Omega}=\left(\frac{\alpha}{4E}\right)\left[\csc^{4}\frac{\chi}{2}+\sec^{4}\frac{\chi}{2}+\frac{A\cos\left(\frac{\alpha}{\hbar\nu}\ln\tan^{2}\frac{\chi}{2}\right)}{\sin^{2}\frac{\chi}{2}\cos\frac{\chi}{2}}\right]^{2} </math> Scattering potential energy (α = constant): <math>V = -\alpha/r</math> |
Rutherford scattering | Differential cross-section (non-identical particles in a coulomb potential):
<math>\frac{d\sigma}{d\Omega}=\left(\frac{1}{n}\right)\frac{dN}{d\Omega} = \left(\frac{\alpha}{4E}\right)^2 \csc^4\frac{\chi}{2}</math> |
Fundamental forces
These equations need to be refined such that the notation is defined as has been done for the previous sets of equations.
Name | Equations |
---|---|
Strong force | <math>
\begin{align} \mathcal{L}_\mathrm{QCD} & = \bar{\psi}_i\left(i \gamma^\mu (D_\mu)_{ij} - m\, \delta_{ij}\right) \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \\ & = \bar{\psi}_i (i \gamma^\mu \partial_\mu - m )\psi_i - g G^a_\mu \bar{\psi}_i \gamma^\mu T^a_{ij} \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \,,\\ \end{align} \,\!</math> |
Electroweak interaction | <math>\mathcal{L}_\mathrm{EW} = \mathcal{L}_g + \mathcal{L}_f + \mathcal{L}_h + \mathcal{L}_y.\,\!</math>
|
Quantum electrodynamics | <math>\mathcal{L}_\mathrm{QED}=\bar\psi(i\gamma^\mu D_\mu-m)\psi -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\;,\,\!</math> |
See also
- Defining equation (physical chemistry)
- List of electromagnetism equations
- List of equations in classical mechanics
- List of equations in quantum mechanics
- List of equations in wave theory
- List of photonics equations
- List of relativistic equations
- Relativistic wave equations
Footnotes
Sources
- B. R. Martin, G.Shaw (3 December 2008). Particle Physics (3rd ed.). Manchester Physics Series, John Wiley & Sons. ISBN 978-0-470-03294-7.
- D. McMahon (2008). Quantum Field Theory. Mc Graw Hill (USA). ISBN 978-0-07-154382-8.
- P.M. Whelan, M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
- P.A. Tipler, G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
- J.R. Forshaw, A.G. Smith (2009). Dynamics and Relativity. Wiley. ISBN 978-0-470-01460-8.
Further reading
- L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0.
- J.B. Marion, W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H.D. Young, R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.