Resistance distance
In graph theory, the resistance distance between two vertices of a simple, connected graph, G, is equal to the resistance between two equivalent points on an electrical network, constructed so as to correspond to G, with each edge being replaced by a resistance of one ohm. It is a metric on graphs.
Definition
On a graph G, the resistance distance Ωi,j between two vertices vi and vj is<ref>"Resistance Distance".</ref>
- <math>
\Omega_{i,j}:=\Gamma_{i,i}+\Gamma_{j,j}-\Gamma_{i,j}-\Gamma_{j,i}, </math>
- where <math>\Gamma = \left(L + \frac{1}{|V|}\Phi\right)^+,</math>
with + denotes the Moore–Penrose inverse, L the Laplacian matrix of G, |V| is the number of vertices in G, and Φ is the |V| × |V| matrix containing all 1s.
Properties of resistance distance
If i = j then Ωi,j = 0. For an undirected graph
- <math>\Omega_{i,j}=\Omega_{j,i}=\Gamma_{i,i}+\Gamma_{j,j}-2\Gamma_{i,j}</math>
General sum rule
For any N-vertex simple connected graph G = (V, E) and arbitrary N×N matrix M:
- <math>\sum_{i,j \in V}(LML)_{i,j}\Omega_{i,j} = -2\operatorname{tr}(ML)</math>
From this generalized sum rule a number of relationships can be derived depending on the choice of M. Two of note are;
- <math>\begin{align}
\sum_{(i,j) \in E}\Omega_{i,j} &= N - 1 \\ \sum_{i<j \in V}\Omega_{i,j} &= N\sum_{k=1}^{N-1} \lambda_k^{-1}
\end{align}</math>
where the λk are the non-zero eigenvalues of the Laplacian matrix. This unordered sum
- <math>\sum_{i<j} \Omega_{i,j}</math>
is called the Kirchhoff index of the graph.
Relationship to the number of spanning trees of a graph
For a simple connected graph G = (V, E), the resistance distance between two vertices may be expressed as a function of the set of spanning trees, T, of G as follows:
- <math>
\Omega_{i,j}=\begin{cases} \frac{\left | \{t:t \in T,\, e_{i,j} \in t\} \right \vert}{\left | T \right \vert}, & (i,j) \in E\\ \frac{\left | T'-T \right \vert}{\left | T \right \vert}, &(i,j) \not \in E \end{cases} </math>
where T' is the set of spanning trees for the graph G' = (V, E + ei,j). In other words, for an edge <math>(i,j)\in E</math>, the resistance distance between a pair of nodes <math>i</math> and <math>j</math> is the probability that the edge <math>(i,j)</math> is in a random spanning tree of <math>G</math>.
Relationship to random walks
The resistance distance between vertices <math>u</math> and <math>u</math> is proportional to the commute time <math>C_{u,v}</math> of a random walk between <math>u</math> and <math>v</math>. The commute time is the expected number of steps in a random walk that starts at <math>u</math>, visits <math>v</math>, and returns to <math>u</math>. For a graph with <math>m</math> edges, the resistance distance and commute time are related as <math>C_{u,v}=2m\Omega_{u,v}</math>.<ref>Chandra, Ashok K and Raghavan, Prabhakar and Ruzzo, Walter L and Smolensky, Roman (1989). "The electrical resistance of a graph captures its commute and cover times". Proceedings of the twenty-first annual ACM symposium on Theory of computing - STOC '89. pp. 574–685. doi:10.1145/73007.73062. ISBN 0897913078.{{cite book}}
: CS1 maint: multiple names: authors list (link)</ref>
As a squared Euclidean distance
Since the Laplacian L is symmetric and positive semi-definite, so is
- <math>\left(L+\frac{1}{|V|}\Phi\right),</math>
thus its pseudo-inverse Γ is also symmetric and positive semi-definite. Thus, there is a K such that <math>\Gamma = KK^\textsf{T}</math> and we can write:
- <math>\Omega_{i,j} = \Gamma_{i,i} + \Gamma_{j,j} - \Gamma_{i,j} - \Gamma_{j,i} = K_iK_i^\textsf{T} + K_j K_j^\textsf{T} - K_i K_j^\textsf{T} - K_j K_i^\textsf{T} = \left(K_i - K_j\right)^2</math>
showing that the square root of the resistance distance corresponds to the Euclidean distance in the space spanned by K.
Connection with Fibonacci numbers
A fan graph is a graph on n + 1 vertices where there is an edge between vertex i and n + 1 for all i = 1, 2, 3, …, n, and there is an edge between vertex i and i + 1 for all i = 1, 2, 3, …, n – 1.
The resistance distance between vertex n + 1 and vertex i ∈ {1, 2, 3, …, n} is
- <math>\frac{ F_{2(n-i)+1} F_{2i-1} }{ F_{2n} }</math>
where Fj is the j-th Fibonacci number, for j ≥ 0.<ref>Bapat, R. B.; Gupta, Somit (2010). "Resistance distance in wheels and fans". Indian Journal of Pure and Applied Mathematics. 41: 1–13. CiteSeerX 10.1.1.418.7626. doi:10.1007/s13226-010-0004-2. S2CID 14807374.</ref><ref>http://www.isid.ac.in/~rbb/somitnew.pdf[bare URL PDF]</ref>
See also
References
- Klein, D. J.; Randic, M. J. (1993). "Resistance Distance". J. Math. Chem. 12: 81–95. doi:10.1007/BF01164627. S2CID 16382100.
- Gutman, Ivan; Mohar, Bojan (1996). "The quasi-Wiener and the Kirchhoff indices coincide". J. Chem. Inf. Comput. Sci. 36 (5): 982–985. doi:10.1021/ci960007t.
- Palacios, Jose Luis (2001). "Closed-form formulas for the Kirchhoff index". Int. J. Quantum Chem. 81 (2): 135–140. doi:10.1002/1097-461X(2001)81:2<135::AID-QUA4>3.0.CO;2-G.
- Babic, D.; Klein, D. J.; Lukovits, I.; Nikolic, S.; Trinajstic, N. (2002). "Resistance-distance matrix: a computational algorithm and its application". Int. J. Quantum Chem. 90 (1): 166–167. doi:10.1002/qua.10057.
- Klein, D. J. (2002). "Resistance Distance Sum Rules" (PDF). Croatica Chem. Acta. 75 (2): 633–649. Archived from the original (PDF) on 2012-03-26.
- Bapat, Ravindra B.; Gutman, Ivan; Xiao, Wenjun (2003). "A simple method for computing resistance distance". Z. Naturforsch. 58a (9–10): 494–498. Bibcode:2003ZNatA..58..494B. doi:10.1515/zna-2003-9-1003.
- Placios, Jose Luis (2004). "Foster's formulas via probability and the Kirchhoff index". Method. Comput. Appl. Probab. 6 (4): 381–387. doi:10.1023/B:MCAP.0000045086.76839.54. S2CID 120309331.
- Bendito, Enrique; Carmona, Angeles; Encinas, Andres M.; Gesto, Jose M. (2008). "A formula for the Kirchhoff index". Int. J. Quantum Chem. 108 (6): 1200–1206. Bibcode:2008IJQC..108.1200B. doi:10.1002/qua.21588.
- Zhou, Bo; Trinajstic, Nenad (2009). "The Kirchhoff index and the matching number". Int. J. Quantum Chem. 109 (13): 2978–2981. Bibcode:2009IJQC..109.2978Z. doi:10.1002/qua.21915.
- Zhou, Bo; Trinajstic, Nenad (2009). "On resistance-distance and the Kirchhoff index". J. Math. Chem. 46: 283–289. doi:10.1007/s10910-008-9459-3. hdl:10338.dmlcz/140814. S2CID 119389248.
- Zhou, Bo (2011). "On sum of powers of Laplacian eigenvalues and Laplacian Estrada Index of graphs". Match Commun. Math. Comput. Chem. 62: 611–619. arXiv:1102.1144.
- Zhang, Heping; Yang, Yujun (2007). "Resistance distance and Kirchhoff index in circulant graphs". Int. J. Quantum Chem. 107 (2): 330–339. Bibcode:2007IJQC..107..330Z. doi:10.1002/qua.21068.
- Yang, Yujun; Zhang, Heping (2008). "Some rules on resistance distance with applications". J. Phys. A: Math. Theor. 41 (44): 445203. Bibcode:2008JPhA...41R5203Y. doi:10.1088/1751-8113/41/44/445203. S2CID 122226781.