List of equations in fluid mechanics
From KYNNpedia
Part of a series on |
Continuum mechanics |
---|
<math>J = -D \frac{d \varphi}{d x} </math> |
This article summarizes equations in the theory of fluid mechanics.
Definitions
Here <math> \mathbf{\hat{t}} \,\!</math> is a unit vector in the direction of the flow/current/flux.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Flow velocity vector field | u | <math> \mathbf{u}=\mathbf{u}\left ( \mathbf{r},t \right ) \,\!</math> | m s−1 | [L][T]−1 |
Velocity pseudovector field | ω | <math> \boldsymbol{\omega} = \nabla\times\mathbf{v} </math> | s−1 | [T]−1 |
Volume velocity, volume flux | φV (no standard symbol) | <math>\phi_V = \int_S \mathbf{u} \cdot \mathrm{d}\mathbf{A}\,\!</math> | m3 s−1 | [L]3 [T]−1 |
Mass current per unit volume | s (no standard symbol) | <math>s = \mathrm{d}\rho / \mathrm{d}t \,\!</math> | kg m−3 s−1 | [M] [L]−3 [T]−1 |
Mass current, mass flow rate | Im | <math> I_\mathrm{m} = \mathrm{d} m/\mathrm{d} t \,\!</math> | kg s−1 | [M][T]−1 |
Mass current density | jm | <math> I_\mathrm{m} = \iint \mathbf{j}_\mathrm{m} \cdot \mathrm{d}\mathbf{S} \,\!</math> | kg m−2 s−1 | [M][L]−2[T]−1 |
Momentum current | Ip | \mathbf{p} \right |/\mathrm{d} t \,\!</math> | kg m s−2 | [M][L][T]−2 |
Momentum current density | jp | <math> I_\mathrm{p} =\iint \mathbf{j}_\mathrm{p} \cdot \mathrm{d}\mathbf{S} </math> | kg m s−2 | [M][L][T]−2 |
Equations
Physical situation | Nomenclature | Equations |
---|---|---|
Fluid statics, pressure gradient |
|
<math> \nabla P = \rho \mathbf{g}\,\!</math> |
Buoyancy equations |
|
Buoyant force <math>\mathbf{F}_\mathrm{b} = - \rho_f V_\mathrm{imm} \mathbf{g} = - \mathbf{F}_\mathrm{g}\,\!</math> Apparent weight |
Bernoulli's equation | pconstant is the total pressure at a point on a streamline | <math>p + \rho u^2/2 + \rho gy = p_\mathrm{constant}\,\!</math> |
Euler equations |
|
<math>\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho\mathbf{u})=0\,\!</math> <math>\frac{\partial\rho{\mathbf{u}}}{\partial t} + \nabla \cdot \left ( \mathbf{u}\otimes \left ( \rho \mathbf{u} \right ) \right )+\nabla p=0\,\!</math> |
Convective acceleration | <math>\mathbf{a} = \left ( \mathbf{u} \cdot \nabla \right ) \mathbf{u}</math> | |
Navier–Stokes equations |
|
<math> \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot\mathbf{T}_\mathrm{D} + \mathbf{f} </math> |
See also
- Defining equation (physical chemistry)
- List of electromagnetism equations
- List of equations in classical mechanics
- List of equations in gravitation
- List of equations in nuclear and particle physics
- List of equations in quantum mechanics
- List of photonics equations
- List of relativistic equations
- Table of thermodynamic equations
<references group="" responsive="1"></references>
Sources
- P.M. Whelan, M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
- P.A. Tipler, G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
- L.N. Hand, J.D. Finch (2008). Analytical Mechanics. Cambridge University Press. ISBN 978-0-521-57572-0.
- T.B. Arkill, C.J. Millar (1974). Mechanics, Vibrations and Waves. John Murray. ISBN 0-7195-2882-8.
- H.J. Pain (1983). The Physics of Vibrations and Waves (3rd ed.). John Wiley & Sons. ISBN 0-471-90182-2.
Further reading
- L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0.
- J.B. Marion, W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H.D. Young, R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.